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EJKFECTS OF SURFACE EMITTANCE ON TURBULENT SKIN F R I C T I O N  

AT SUPERSONIC AND Low WPERsomc SPEZCS 

By Je r ry  M. Allen and K. R. Czarnecki 
Langley Research Center 

SUMMARY 

A search of ava i lab le  l i t e r a t u r e  ind ica tes  t h a t  t h e  r ad ia t ive  proper t ies  
of supersonic a i r c r a f t  mater ia ls  depend heavily upon t h e  metal chosen f o r  t h e  
a i r c r a f t  skin and t h e  degree of oxidation of t h e  surface.  A ca lcu la t ive  study 
has been made t o  determine t h e  e f fec t  of  emittance upon wal l  temperature and 
skin f r i c t i o n  over a range of supersonic and low hypersonic f l i g h t  conditions. 
Calculations were made f o r  Mach numbers up t o  9, a l t i t u d e s  up t o  80 000 f e e t ,  
and vehicle  lengths up t o  200 f e e t .  

The r e s u l t s  ind ica te  t h a t  t he  sk in - f r i c t ion  drag of a supersonic a i r c r a f t  
increases  with increased surface emittance. Emittance increases  w i t h  surface 
oxidation. Thus, f o r  a new supersonic a i r c r a f t  with skin made of a metal with 
low rad ia t ive  proper t ies  i n  t h e  polished, unoxidized s t a t e ,  t h e  sk in - f r i c t ion  
drag w i l l  increase with t i m e  u n t i l  t h e  surface becomes s tab ly  oxidized. This 
e f f ec t  of emittance on sk in  f r i c t i o n  increases  with Mach number and becomes 
subs t an t i a l  above Mach numbers of about 2.5.  Hence, f o r  spec i f ied  f l i g h t  con- 
d i t ions ,  t h e  l e v e l  of  sk in - f r i c t ion  drag a t  which t h e  vehicle  operates depends 
upon the  metal  used f o r  t h e  skin of t he  a i r c r a f t  and t h e  degree of oxidation of 
t h e  metal. 

INTRODUCTION 

A body f ly ing  a t  supersonic speeds develops a sk in - f r i c t ion  drag which, 
f o r  given f l i g h t  conditions, i s  a function of t h e  w a l l  temperature. The wal l  
temperature, i n  t u rn ,  i s  dependent upon t h e  a b i l i t y  of t h e  a i r c r a f t  surface t o  
r ad ia t e  p a r t  of t h e  energy which it receives  through aerodynamic heating back 
t o  t h e  atmosphere. This a b i l i t y  t o  r ad ia t e  energy i s  described by a quant i ty  
known a s  emittance, which i s  defined a s  the  r a t i o  of t he  r a t e  of radiant  emis- 
s ion from a body, a s  a consequence of i t s  temperature only, t o  t h e  corresponding 
r a t e  of emission from a blackbody a t  t h e  same temperature. The range of E i s  
between 0 and 1, where E = 0 represents  a nonradiating body and E = 1 repre- 
sen ts  a per fec t  r ad ia to r  (blackbody). 

I n  performing sk in- f r ic t ion  calculat ions f o r  f u l l - s c a l e  f l i g h t  conditions,  
t h e  usual  procedure i s  t o  choose a value of emittance (usual ly  about 0.83) and 
t o  assume t h a t  t h i s  value holds f o r  a l l  m e t a l s  and remains constant throughout 



t h e  l i f e  of t h e  a i r c r a f t .  A search of ava i lab le  l i t e r a t u r e ,  however, revealed 
t h a t  surface emittance f o r  supersonic a i r c r a f t  materials can vary widely with 
t h e  degree of surface oxidation and with the  metal used f o r  t h e  skin of t h e  
a i r c r a f t .  (See f i g .  1.) Therefore, t h e  present  inves t iga t ion  w a s  undertaken 
t o  determine t h e  e f f e c t  of emittance upon w a l l  temperature and skin f r i c t i o n  
over a range of supersonic and low hypersonic f l i g h t  conditions. Although it 
i s  evident t h a t  t h e  e f f e c t s  of emittance on skin temperature and s t r u c t u r a l  
considerations heavily outweigh any e f f e c t s  on sk in - f r i c t ion  drag, t h e  object  
of  this paper i s  t o  point  out t h a t  these  e f f e c t s  on drag do e x i s t  and t o  pro- 
vide f o r  a quan t i t a t ive  assessment of them. Calculations were made f o r  Mach 
numbers up t o  9, a l t i t u d e s  up t o  80 000 f e e t ,  and vehicle  lengths up t o  
200 f e e t .  

A l l  ca lcu la t ions  a r e  f o r  two-dimensional, fully turbulent  flow over a f l a t  
p l a t e .  A i r  i s  assumed t o  be a per fec t  gas and a continuous medium. The e r ro r s  
associated with t h i s  assumption are negl ig ib le  a t  t h e  lower Mach numbers but 
become more pronounced a t  t h e  higher Mach numbers (M > 7). 

As  an a i d  t o  a i r c r a f t  designers i n  making wall-temperature calculat ions a 
number of  design char t s  have been derived and a r e  presented i n  an appendix. 
These design char t s  contain de t a i l ed  p l o t s  of t h e  e f f e c t s  of emittance, Mach 
number, and a l t i t u d e  on t h e  d i s t r ibu t ion  of equilibrium w a l l  temperatures f o r  
vehicle  lengths up t o  200 f e e t .  

SYMBOLS 

C f  

P C 

CF 

h 

H 

L 

M 

V 

R/f  t 

l o c a l  sk in- f r ic t ion  coef f ic ien t  

spec i f i c  heat of a i r  a t  constant pressure (0.24 Btu/lb-OR) 

average sk in - f r i  c t ion  coef f ic ien t  

coef f ic ien t  o f  heat t r ans fe r ,  Btu/ft2-'R- sec 

a l t i t u d e ,  f t  

body length,  f t  

Mach number 

veloci ty ,  f t / s ec  

Reynolds number per  foot ,  - ~,V, 
cbo 

heat - t ransfer  r a t e  pe r  un i t  area,  Btu/sec-ft2 

temperature, OR 
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X longi tudinal  distance,  f t  

E emittance 

7 r a t i o  of spec i f i c  heats  (1.4 f o r  a i r )  

temperature recovery f a c t o r  (0.88 f o r  turbulent  boundary layer )  

P density of a i r ,  lbm/ft3 

Q Stefan-Boltzmann constant (0.483 x lo-= Btu/sec-ft2-’R4) 

ct 
coef f ic ien t  of v i scos i ty  0.232435 x 10-TT,  To2 + 216 ) , 1b;f’;ec 

Subscripts:  

a aero dynami c 

r r ad ia t ive  

W wal l  conditions 

W free-stream conditions 

aw adiaba t ic  wal l  conditions 

LI2 conditions a t  t h e  midpoint of t he  body 

MEZTHOD O F  CALCULATION 

The wal l  temperatures presented i n  this paper were calculated by forming a 
heat balance between aerodynamic and r ad ia t ive  heating as  described i n  r e fe r -  
ence 1. The aerodynamic heat input t o  a surface of un i t  a rea  i s  given by 

The rad ia t ive  heat l o s t  by t h e  surface i s  given by 

For no ne t  hea t - t ransfer  r a t e  t h e  aerodynamic and rad ia t ive  terms must be equal. 
Hence, 

qa = 9, (3) 
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but  

and 

€l3 4 Tw + Tw = Taw 

2 

( 5 )  

( 8 )  

function of 

F ina l ly  , 

Equation (8) shows t h a t  the  equilibrium w a l l  temperature i s  a 
Mach number, Reynolds number, a l t i t ude ,  and surface emittance. A l l  skin- 
f r i c t i o n  coef f ic ien ts  used i n  t h i s  repor t  were estimated by the  modified 
T '  method described i n  reference 2. The range of values of E used i n  the  
calculat ions was based on the  r e s u l t s  of references 3 t o  8. 
because it requi res  a double i t e r a t i v e  process, i s  very tedious t o  solve by 
hand; hence, an e lec t ronic  data  processing machine (IBM 7094) w a s  u t i l i z e d  t o  
make the  wall-temperature and sk in- f r ic t ion  calculat ions.  

Equation ( 8 ) ,  

The calculat ions neglect t h e  so la r  rad ia t ion  heat impinging upon t h e  upper 
surface of t h e  a i r c r a f t  during daytime operation. Sample calculat ions f o r  a 
heat  balance between aerodynamic, rad ia t ive ,  and so la r  terms indica te  t h a t  the  
e r ro r s  associated with neglecting t h e  so l a r  term are negl igible  even under the  
most severe so l a r  conditions - noontime f ly ing  of a highly absorptive vehicle  a t  
high a l t i t u d e s .  I n  addition, it w a s  assumed t h a t  no conductive heat t r ans fe r  
occurred between t h e  surface and the  i n t e r i o r  of t h e  a i r c r a f t .  Reference 9 has 
reported t h a t  t h i s  assumption i s  not unreasonable. 

RESULTS AND DISCUSSION 

The va r i a t ion  of emittance with wal l  temperature f o r  a typ ica l  s ta in less -  

(See f ig .  l ( a )  , prepared from 
The lower curve ( E  M 0.1) might represent t he  rad ia t ive  char- 

The highest  curve (E zz 0.9) would probably represent t he  

s t e e l  specimen shows t h a t  t h e  a b i l i t y  of steel t o  r ad ia t e  energy increases  con- 
s iderably with t h e  degree of surface oxidation. 
r e f s .  3 and 4. ) 
a c t e r i s t i c s  of a supersonic a i r c r a f t  before it had been flown and exposed t o  
aerodynamic heating. 
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6 7  
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Oxidized 
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3 1200 1600 2000 2400 2800 
Tu,, OR 

400 800 t200 1600 
T w v  R 

400 800 1200 1600 
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(a) Stainless steel (Type 347). (b) Titanium. (c) Aluminum. 

Figure 1.- Effect of wall temperature on surface emittance. 

cs  of a vehicle  which had been oxidized by exposure t o  a 
heat ing f o r  several  supersonic f l i g h t s .  

Qnami 

Figure l(b) shows the  r ad ia t ive  proper t ies  of a t y p i c a l  t i tanium specimen 
( r e f .  3 ) .  The same t rend of emittance with surface condition i s  displayed, but  
t h e  l e v e l  of emittance reached by the  oxidized t i tanium ( E  n. 0.5) i s  not near ly  
so high a s  t h a t  reached by the  oxidized s t a i n l e s s  s t e e l .  

The r ad ia t ive  proper t ies  of aluminum ( f i g .  1( c) , prepared from r e f s .  3, 6, 
7, and 8 )  reveal  t h a t  the  emittance of aluminum remains a t  a r e l a t i v e l y  l o w  
l e v e l  (below E = 0.3) even a f t e r  i t s  surface has been oxidized. 

Hence, t he  rad ia t ive  proper t ies  of supersonic-aircraf t  metals vary widely. 
I n  t h i s  paper the  emphasis i s  on the  rad ia t ive  proper t ies  of s t a i n l e s s  s t e e l  
and t i tanium. I n  general ,  aluminum i s  not discussed because i t s  physical prop- 
e r t i e s  forbid i t s  use a s  an a i r c r a f t  surface mater ia l  above Mach numbers of 
about 2.2, and a t  Mach numbers below 2.2 the  e f f e c t s  of emittance a r e  small. 

Equation (8) shows t h a t ,  f o r  given f l i g h t  conditions,  t he  value of emit- 
tance of a metal determines the  skin temperature of the  vehicle .  The tempera- 
t u r e ,  i n  tu rn ,  determines the  sk in- f r ic t ion  drag on the  vehicle .  To evaluate 
t h e  magnitude of t h e  e f f e c t  of surface emittance on sk in - f r i c t ion  drag, a com- 
puter  program was u t i l i z e d  t o  ca lcu la te  wal l  temperature and f l a t - p l a t e  skin 
f r i c t i o n  f o r  a va r i e ty  of f l i g h t  conditions and emittance values.  

A s  an a id  t o  a i r c r a f t  designers i n  making wall-temperature calculat ions,  a 
number of design char t s  have been derived and a r e  presented i n  an appendix. 
These design cha r t s  contain de t a i l ed  p l o t s  of the  e f f e c t s  of emittance, Mach 
number, and a l t i t u d e  on the  d i s t r i b u t i o n  d equilibrium wal l  temperatures f o r  
vehicle  lengths  up t o  200 f e e t .  
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Figure 2(a) shows t h e  
wall-temperature d i s t r i b u t i o n  
along a 200-foot-long f l a t  
p l a t e  f l y i n g  a t  75 000 f e e t  
a t  Mach 3 .  The horizontal  
l i n e  i s  t h e  adiabatic-wall- 
temperature case (E = 0 ) .  
Increasing emittance causes a 
decrease i n  w a l l  temperature. 
The temperature decrease i s  
desirable  from s t r i c t l y  ther-  
m a l  considerations, but ,  as 
w i l l  be  noted subsequently, 
i s  detrimental  from a skin- 
f r i c t i o n  consideration. A 
decrease i n  wall  temperature 
leads t o  an increase i n  skin 
f r i c t i o n .  Thus, skin f r i c -  
t i o n  increases with increased 
surface emittance. The emit- 
tance values of 0 .1  and 0.9 
were chosen f o r  calculat ive 
purposes because they repre- 
sent the  p r a c t i c a l  l i m i t s  f o r  
a i r c r a f t  metals. (See 
f i g .  1.) 

lio0 r 

gook . 
1.068 : 10 . O ;  R / f t  : 

100 120 140 160 180 2 
x ,  f t  

EZO 

E Z . 1  __ 

The s teep temperature 
gradient near the  leading 
edge of t h e  body i s  explained, 
mathematically, by the  f a c t  
t h a t  t h e  values of Cf i n  
equation (8) a r e  very high 
due t o  the  low Reynolds num- 
b e r s  near t h e  leading edge. 
Physically,  t h e  wal l  tempera- 
t u r e  would Be expected t o  
r i s e  as the  stagnation point 
on a body i s  approached. 
After  the  i n i t i a l  gradient 
t h e  temperature tends t o  
l e v e l  off  with increasing 
distance because, as the 
Reynolds numbers become 
la rger ,  the  corresponding 
decreases i n  Cy become 
smaller. 

120 140 160 180 200 
x ,  f t  

C10 

C=.l -_ 

( c )  M,: 9.0; R / f t  = 3.200 X 10' 

I I i  
100 120 140 160 180 200 

x ,  f t  

1 8 0 0  u 
0 20 40 60 

The temperature d i s t r i -  
butions f o r  Mach numbers 6 
and 9 a t  t h e  same a l t i t u d e  

Figure 2. - Variation of wall temperature wi th longitudinal distance. 
H = 75 000 feet  

6 



( H  = 75 000 f t )  are shown i n  f igu res  2(b) and 2(c) ,  respectively.  
adiabatic-wall  temperature, of course, increases  with Mach number, bu t  even an 
emittance of 0 .1  provides a very la rge  reduction i n  temperature from t h e  adia- 
b a t i c  case a t  t h e  higher Mach numbers. 

The 

The l o c a l  sk in- f r ic t ion  
d i s t r ibu t ions  along t h e  f l a t  
p l a t e  a re  presented i n  f i g -  
u re s  3(a) t o  3(c)  and corre- 
spond t o  the  temperature d is -  
t r i b u t i o n s  shown i n  f igu res  
2(a) t o  2(c) .  
Cf 
again,  due t o  the  very low 
Reynolds numbers i n  t h i s  
region. The e f f e c t  of emit- 
t a x e  on Cf becomes 
increasingly important with 
increasing Mach number. 

The increase i n  
near t he  leading edge is ,  

I n  f igure  4 t he  equi l ib-  
r i u m  w a l l  temperature a t  t h e  
midpoint of t h e  body i s  
p lo t ted  against  Mach number 
f o r  several  values of emit- 
tance.  The length of t h e  
body i s  taken t o  be 200 f e e t ,  
which i s  estimated t o  be  t h e  
approximate length of fu ture  
supersonic t ranspor t  a i r -  
c r a f t .  The w a l l  temperature 
begins t o  diminish s i g n i f i -  
can t ly  from t h a t  of t h e  adia- 
b a t i c  wal l  above a Mach number 
of about 2.5.  A t  Mach 9 t he  
wal l  temperature of oxidized 
s t a i n l e s s  s t e e l  (E = 0 .9 )  i s  
about llOOo lower than t h e  
temperature of polished 
s t a i n l e s s  s t e e l  ( E  = 0.1) and 
about 240' lower than t h e  tem- 
perature  of oxidized t i tanium 
( E  = 0 . 5 ) .  

The average sk in- f r ic t ion  

s =  9 & / 

C f  

00121 I 

I 

'0 20 do 6 0  

C = O  

( a )  M,= 3.0; R / f t  1.06L 

100 120 140 160 1 
I I I I 

x ,  f t  

- 
Id0 1 jO ldi0 160 180 200 
X .  f t  

I I I I T I  

80 100 120 140 160 
x .  f t  

.zoo x 106 

44 180 200 

Figure 3. - Variation of local skin-friction coefficient with longitudinal 
distance. H = 75 000 f ee t  

coef f ic ien ts ,  corresponding t o  the equilibrium 
w a l l  temperatures of f igu re  4, a re  shown i n  f igure  5 .  For the  sk in- f r ic t ion  
calculat ions,  t he  w a l l  temperature w a s  assumed t o  be constant over t he  e n t i r e  
length of t h e  p l a t e .  To show more c l ea r ly  t h e  e f f e c t  of emittance on skin 
f r i c t i o n ,  f igure  6 presents  t h e  r a t i o  of CF a t  t h e  given emittance t o  CF a t  
an emittance of zero (adiabatic-wall  conditions) p lo t ted  against  Mach number. 
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I ,  I . . .  

Figure 4. - Variation of equi l ibr ium wall temperature at L / 2  
wi th Mach number and emittance. H = 75 000 feet; 
L = 200 feet 

0 1 2 3 4  
M, 

6 

: =  . 5  

2 
91.1 

Figure 5. - Effect of emittance and Mach number on average skin- 
f r ic t ion coefficient H = 75 000 feet: L = 200 feet 

9 

This f igure  ind ica tes  t h a t  a 
supersonic-transport-type a i r c r a f t ,  
with s t a in l e s s - s t ee l  skin and a 
c ru i se  Mach number of 3,  would have 
about 3.6 percent higher skin- 
f r i c t i o n  drag after several  f l i g h t s  
( E  = 0.9) than when it was new and 
unoxidized ( E  = 0.1). This percent- 
age increases  rapidly with Mach num- 
ber  such t h a t  the difference i s  about 
16 percent a t  Mach 9. Between t h e  
oxidized s t a i n l e s s  s t e e l  ( E  = 0.9)  
and t h e  oxidized t i tanium ( E  = 0.5) 
t h e  sk in- f r ic t ion  difference 
increases  from about 2.4 percent a t  
Mach 3 t o  about 3.7 percent a t  
Mach 9 .  

The preceding discussion indi-  
ca t e s  t h a t  an increase i n  w a l l  t e m -  
perature  leads  t o  a decrease i n  skin 
f r i c t i o n .  However, the  s t r u c t u r a l  
advantages of low skin temperature 
are e s s e n t i a l  and heavi ly  outweigh 
t h e  disadvantage of t he  increased 
skin f r i c t i o n  associated with t h e  
low w a l l  temperature. The object  
of t h i s  report  i s  t o  point out t h a t  
these  sk in- f r ic t ion  increments are 
present and should be accounted f o r  
when drag estimates a r e  made. 

The las t  pa r t  of this study con- 
concerns t h e  a l t i t u d e  e f f e c t  on w a l l  
temperature and skin f r i c t i o n  f o r  
severa l  values of emittance. Fig- 
u re  7 shows t h e  aveTage w a l l  temper- 
ature as a function of a l t i t u d e  f o r  
severa l  Mach numbers and values of 
emittance. The curve f o r  M = 0 
simply represents  t he  ambient tem- 
perature  a t  t h e  specif ied a l t i t u d e .  

about 40 000 feet occurs because t h e  The change t n  t h e  slope of t h e  curves a t  
ambient temperature becomes constant a t  about t h i s  a l t i t u d e .  The f igure  indi-  
ca tes  that a t  a l t i t u d e s  above 53 000 feet  a new s t a in l e s s - s t ee l  a i r c r a f t  
(E = 0.1) f ly ing  a t  Mach 6 would have a higher w a l l  temperature than an older 
s t a in l e s s - s t ee l  a i r c r a f t  ( E  = 0.9) f ly ing  a t  Mach 9. 

The sk in- f r ic t ion  r a t i o s ,  corresponding t o  t h e  w a l l  temperatures of f i g -  
ure 7, a re  presented i n  f igure  8. Again, t he  r a t i o  C F / C F , ~ ~  ind ica tes  t h e  
amount of deviation from t h e  adiabatic-wall  conditions.  
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Figure 6. - Effect of emittance and Mach number on average skin- 
f r ic t ion ratio. H = 75 000 feet; L = 200 feet. 

I I I 1 6000 I 

2000 

I I 
0 20 000 40 000 60 000 80 000 

H ,  f t  

Figure 7. - Variation of average wall temperature wi th altitude, 
Mach number, and emittance. L = 200 feet 

C F  
c F  ,aw 

/ 

1.2. - 

r -  M,: 3 s =  .1 
1.01 

0 20 000 40 000 60 000 80 000 
H ,  f t  

Figure 8. - Variation of average skin-friction ratio wi th altitude, 
Mach number. and emittance. L = 200 feet 
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CONCLUDING RElMARKs 

A search of ava i lab le  l i t e r a t u r e  ind ica tes  t h a t  t h e  r ad ia t ive  proper t ies  
of supersonic a i r c r a f t  mater ia ls  depend heavily upon t h e  metal chosen f o r  the 
a i r c r a f t  skin and t h e  degree of oxidation of t he  surface.  A ca lcu la t ive  study 
has been made t o  determine the  e f f e c t  of emittance upon w a l l  temperature and 
'skin f r i c t i o n  over a range of supersonic and low hypersonic f l i g h t  conditions. 
Calculations were made f o r  Mach numbers up t o  9, a l t i t u d e s  up t o  80 000 f e e t ,  
and vehicle lengths  up t o  200 f e e t .  

The r e s u l t s  ind ica te  t h a t  t he  sk in- f r ic t ion  drag of a supersonic a i r c r a f t  
increases  with increased surface emittance. Emittance increases  with surface 
oxidation. Thus, f o r  a new supersonic a i r c r a f t  with skin made of a metal with 
low rad ia t ive  proper t ies  i n  t h e  polished, unoxidized state, t h e  sk in- f r ic t ion  
drag w i l l  increase with time u n t i l  t he  surface becomes s t ab ly  oxidized. This 
e f f e c t  of emittance on skin f r i c t i o n  increases  with Mach number and becomes 
subs t an t i a l  above Mach numbers of about 2.5.  Hence, f o r  specif ied f l ight con- 
d i t i ons ,  t h e  l eve l  of sk in- f r ic t ion  drag a t  which t h e  vehicle  operates depends 
upon the  metal used f o r  t h e  skin of the a i r c r a f t  and the  degree of oxidation of 
the  metal. 

Langley Research Center, 
National Aeronautics and Space Administration, 

Langley Stat ion,  Hampton, V a . ,  November 25, 1964. 
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APPENDIX 

40 000 
60 ooo 
80 ooo 
80 000 

120 000 

This appendix i s  presented a s  an a id  t o  the a i r c r a f t  designer i n  calcu- 
l a t i n g  equilibrium wall  temperature and, hence, skin f r i c t i o n .  The computa- 
t i o n s  were made i n  the  same manner described previously i n  the sect ion "Method 
of Calculation." Calculations of t h e  d i s t r ibu t ion  of equilibrium wal l  temper- 
a tu re s  for vehicle  lengths  up t o  200 f e e t  w e r e  made f o r  Mach numbers from 2 
t o  9, emittances from 0.1 t o  0.9, and a l t i t u d e s  from 40 000 t o  120 000 f e e t .  
The l o c a l  wall  equilibrium temperature Tw i s  p lo t t ed  i n  f igures  A-1  t o  A-5  
a s  a function of surface dis tance x and Mach number I&,. The a l t i t u d e s  and 

1.925 x -LO6 

2.789 x lo5 

4.076 x lo4 

7.393 x 105 

1.070 X lo5 

r a t i o s  corresponding t o  t h e  various f igu res  a r e  indicated i n  t h e  f o l -  
M, 

lowing table : 

Figure 

A - 1 . .  . . . . . . . . .  
A - 2 .  . . . . . . . . . .  
A - 3 . .  . . . . . . . . .  
A-4 . . . . . . . . . . .  
A - 5 . .  . . . . . . . . .  

H, f t  1 1 



1l111111l1l111ll11l1l I I1 I I I I1 II II 

60 

x ,  f t  

140 

M, 
9 

8 

7 

6 

5 

I 

, 

(a) E = 0.1. 
Figure A-1.- Variation of equi l ibr ium local wail temperature with surface distance. H = 40 OOO feet; - RI f t  = 1.925 x 10 6 . 

M, 
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(b) E = 0.3. 
Figure A-1.- Continued. 



APPENDIX 

6 80 1 

x ,  f t  

(c )  E = 0.5. 
Figure A-1.- Continued. 
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Figure A-1.- Continued. 
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